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We theoretically investigate the spin transport in two-terminal mesoscopic rings in the presence of both the
Rashba spin-orbit interaction �RSOI� and the Dresselhaus spin-orbit interaction �DSOI�. We find that the
interplay between the RSOI and DSOI breaks the original cylindric symmetry of the mesoscopic rings and
consequently leads to the anisotropic spin transport, i.e., the conductance is sensitive to the positions of the
incoming and outgoing leads. The anisotropic spin transport can survive even in the presence of disorder
caused by impurity elastic scattering in a realistic system.
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I. INTRODUCTION

In recent years, the spin-orbit interaction �SOI� in low-
dimensional semiconductor structures has attracted consider-
able attention because of its potential application in all-
electrical controlled spintronic devices.1,2 There are two
types of SOI in conventional semiconductors: one is the
Rashba spin-orbit interaction �RSOI� induced by structure
inversion asymmetry3,4 and the other is the Dresselhaus spin-
orbit interaction �DSOI� induced by bulk inversion
asymmetry.5 The strength of the RSOI can be tuned by ex-
ternal gate voltages or asymmetric doping. In thin quantum
wells, the strength of the DSOI is comparable to that of the
RSOI.6 The interplay between the RSOI and DSOI leads to a
significant change in the transport property. There are a few
works on the effects of the competition between these two
types of SOI on the transport properties of two-dimensional
electron gas,7–9 especially in mesoscopic rings.10 The circular
photogalvanic effect can be used to separate the contribution
of the RSOI and DSOI, and the relative strengths of the
RSOI and DSOI can be extracted from the photocurrent.7

The RSOI and DSOI can interfere in such a way that the spin
dependent features disappear even though the individual SOI
is still strong, e.g., vanishing spin splitting in the presence of
the equal-strength RSOI and DSOI.7 This cancellation results
in extremely long spin relaxation time in specific crystallo-
graphic directions and the disappearance of the beating pat-
tern in SdH oscillation.9

Recently, advanced growth techniques have made it pos-
sible to fabricate high quality semiconductor rings,11 which
have attracted considerable attention due to the intriguing
quantum interference phenomenon arising from their unique
topological geometry. The Aharonov-Bohm and the
Aharonov-Casher effects are typical examples of quantum
mechanical phase interference, which have been demon-
strated experimentally12,13 and theoretically14 on semicon-
ductor rings. The quantum transport properties through semi-
conductor ring structures with the RSOI alone have attracted
considerable interest.15–20 SOIs in semiconductors behave
like an in-plane momentum-dependent magnetic field and
lead to a lifting of spin degeneracy of energy bands. This
effective magnetic field induces a wave phase difference be-
tween the upper arm and lower arm, resulting in the oscilla-

tion of the conductance.1,20,21 Therefore, the conductance os-
cillates with increasing strength of the RSOI.15,16 The ring
subjected to the DSOI alone shows the exact same oscillation
since the Hamiltonian of the RSOI alone is mathematically
equivalent to that of the DSOI alone by a unitary
transformation.22 The interplay between the RSOI and DSOI
results in a periodic potential in an isolated ring, producing
the gap in the energy spectrum, suppressing the persistent
currents,22 and breaking the cylindrical symmetry of the me-
soscopic rings. This interesting feature leads to the aniso-
tropic spin transport and could be detected using the trans-
port property in an open two-terminal mesoscopic ring. This
anisotropic spin transport is the dominant difference between
our work and the previous studies15–19 and should be impor-
tant for the potential application of spintronic devices.

In this paper, we investigate theoretically the spin trans-
port in two-terminal mesoscopic rings in the presence of both
the RSOI and DSOI. We find that the interplay between the
RSOI and DSOI leads to a significant change in the trans-
mission, the localization of electrons, and the spin polariza-
tion of the current. This interplay weakens and smoothens
the oscillation of the conductance and breaks the original
cylindrical symmetry, leading to the anisotropic spin trans-
port. The paper is organized as follows. In Sec. II, we present
the theoretical model and formulation. The numerical results
and discussions are given in Sec. III. Finally, the conclusion
is given in Sec. IV.

II. THEORETICAL MODEL

A semiconductor mesoscopic ring �see Fig. 1� in the pres-
ence of the RSOI and DSOI can be described by the single-
particle effective mass Hamiltonian

Ĥ =
− �2k2

2m*
+ ���xky − �ykx� + ���xkx − �yky� + V�r� ,

�1�

where the x axis is along the �100� direction, k=−i� is the
electron wave vector, m* is the electron effective mass,
�i �i=x ,y ,z� are the Pauli matrices, � is the strength of the
RSOI, and � is the strength of the DSOI. V�r� is the radial
confining potential, which is neglected hereafter since we
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consider that electrons only occupy the lowest subband in a
ring with a narrow width. The one-dimensional Hamiltonian
of a ring in a dimensionless form in lattice representation is23

Ĥring = �
n=1

N

�
�=↑,↓

�nĉn,�
† ĉn,�

− �
n=1

N

�
�,��=↑,↓

�t�
n,n+1;�,��ĉn;�

† ĉn+1;�� + H.c.� , �2�

where the hopping energies are given in the 2�2 matrix
form as

t�
n,n+1 = tÎs − i

�

2a
�cos �n,n+1�x + sin �n,n+1�y�

− i
�

2a
�cos �n,n+1�y − sin �n,n+1�x� , �3�

where � is the angular coordinate and �n is the on-site po-
tential energy. The operator ĉn,� �ĉn,�

† � annihilates �creates� a
spin � electron at the site n of the ring. �n,n+1 is the angle
between the nth site and the �n+1�th site. t=�2 /2m*a2,
where a is the lattice spacing constant, is the nearest-
neighbor hopping term in the lead.

The spin-resolved conductance of a two-terminal device
can be obtained by using the Landauer-Büttiker formula24

G = �G↑↑ G↑↓

G↓↑ G↓↓
� =

e2

h
�

p,p�=1

M ��tpp�,↑↑�2 �tpp�,↑↓�2

�tpp�,↓↑�2 �tpp�,↓↓�2
� , �4�

where M is the number of conducting channels, the transmis-
sion matrix elements t=2	−Im �L

r
� IsG1N

r 	−Im �R
r

� Is and
�tnn�,����

2 represents the probability for a spin-� electron in-
coming from the left lead in the orbital state �n
 to appear as
a spin-�� electron in the orbital channel �n�
 in the right lead.

We can calculate the conductance from lead p to lead q by
using the Fisher-Lee relation.25 The detailed formula can be
found in the Ref. 26,

GR = �EI − Hc − �R�−1, �5�

T̄pq = Tr�	pGR	qGA� , �6�

where Hc is the Hamiltonian of the one-dimensional �1D�
isolated ring. 	p�i , j�=�m
m�pi�

�vm

a 
m�pj� describes the cou-
pling of the ring conductor to the leads. We assume that the
RSOI and DSOI only exist in the ring and are absent in

the leads. The self-energy �R=�p=1,2�p
R, where �p

R�i , j�
= t2gp

R�pi , pj�, describes the effect of the external leads on the
ring. The Green’s function between two points along the
leads is given by gp

R�pi , pj�=− 1
t �m
m�pi�exp�ikma�
m�pj�.

The function 
m�pi� describes the mth mode in lead i. In this
paper, we take a as the length unit and E0=�2 /2m*a2 as the
energy unit.

The local density of electron states is26

��r,E� =
1

2�
A�r,r;E� = −

1

�
Im�GR�r,r;E�� , �7�

where A� i�GR−GA� is the spectral function, which can also
be written as

��r,E� � �
n

1

2�

n�n�r��
n
*�r�

�E − �n0 + �n�2 + �n/2�2

→ �
n

��E − �n0���n�r��2 as n → 0, �8�

where � /2n represents the lifetime of an electron remaining
in state n before it escapes into the leads, �n0 is the eigenen-
ergy of the isolated conductor, and � ��� is the eigenstate of
the effective Hamiltonian �Hc+�R� ��Hc+�A��.26

III. RESULTS AND DISCUSSIONS

A. One-dimensional ring with both Rashba spin-orbit
interaction and Dresselhaus spin-orbit interaction

Many previous works investigating the spin transport
through a 1D ring only account for the RSOI.15 The RSOI
behaves like an effective in-plane momentum-dependent
magnetic field. This effective magnetic field induces a phase
difference between the electrons traveling clockwise and
counterclockwise along the ring’s upper and lower arms.
Therefore, the conductance of a 1D ring in the presence of
the RSOI oscillates quasiperiodically with changing the
strength of the RSOI and the Fermi energy EF.

We study the transport through a mesoscopic ring in the
presence of both the RSOI and DSOI. First, we consider the
ballistic transport through the mesoscopic ring in the pres-
ence of the RSOI �DSOI� alone. In Fig. 2, we plot the con-
ductance through a 1D ring as a function of the strength of
the RSOI Qr. This figure shows that the conductances are
exactly the same when the right lead is located at symmetric
positions, e.g., �= �

1
4�, �

1
2�, and �

3
4�. The RSOI or

DSOI alone in the ring does not break the cylindrical sym-
metry and the transport is still isotropic when the outgoing
leads are located at symmetric positions with respect to the x
axis �see the dashed lines in the insets of Fig. 2�. The quan-
tum interference between the alternation paths, the spin up or
spin down clockwise and anticlockwise, is responsible for
the oscillation of the conductance.

When the 1D mesoscopic ring is subjected to both the
RSOI and DSOI, as shown in Fig. 3, the conductances be-
come asymmetric when the outgoing lead is located at sym-
metric positions, e.g., �= �

1
4�, �

1
2�, and �

3
4�. The aniso-

tropy of the conductance is induced by the interplay of the
RSOI and DSOI, which leads to a periodic potential

y

x

�

FIG. 1. Schematic diagram of a 1D semiconductor mesoscopic
ring with two leads. Electrons are injected from the left lead, pass
through the ring, and exit from the right lead. SOI only exists in the
ring.
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��
2 sin 2�.22 The height of the periodic potential is deter-

mined by the product of the strengths of the RSOI and DSOI,
and the periodicity of the potential is fixed at �. The poten-
tial exhibits barriers at �= 1

4�, − 3
4� and the valleys at �=

− 1
4�, 3

4�. Thus, the conductance displays asymmetric fea-
tures for the symmetric positions of the outgoing leads.

If the incoming lead locates at �= 3
4� �see Fig. 4�, we find

that the transmission becomes symmetric for the outgoing
lead located at the symmetric positions with respect to the
new incoming lead. In Fig. 4, we plot the conductance of a
1D ring with the incoming lead located at �= 3

4�. The con-
ductance becomes symmetric again with respect to the
straight line �= 3

4� and �=− 1
4� �the dashed lines in the

insets of Fig. 4�. The periodic potential ��
2 sin 2� induced by

the interplay between the RSOI and DSOI22 results in the
maxima at �= 1

4�, − 3
4� and the minima at �= 3

4�, − 1
4�.

In order to describe the magnitude of the anisotropy of the
conductance induced by the interplay of the RSOI and DSOI,
we define the ratio � as

���,− �� =
G� − G−�

�G� + G−��/2
, �9�

where G�� is the conductance when the right lead is located
at the positions with an angle �� with respect to the x axis.

In Fig. 5, we plot ��� /4,−� /4� as a function of the
strength of the RSOI and DSOI when the left lead is located
at the position of �=�. � oscillates with the changing
strength of the RSOI and DSOI. The maximum of the aniso-
tropy of the conductance can approach 20%. This anisotropic
transport can be interpreted as follows. The interplay be-
tween the RSOI and DSOI leads to an effective periodic
potential ��

2 sin 2�.22 The potential height is related to the
strength of the RSOI and DSOI. ��� ,−��=0 when the ring
is subjected to the DSOI alone because the periodic potential

FIG. 2. The conductance through a 1D ring in the presence of
the RSOI or DSOI alone as a function of the strength of the RSOI
Qr��N /2ta�, EF=−0.1, and the outgoing lead is located at �

1
2�,

�
1
4�, �

3
4�. �see the insets�.

FIG. 3. The conductance through a 1D ring in the presence of
the RSOI and DSOI as a function of the strength of the RSOI and
DSOI, Qd��N /2ta�, Qr=Qd, EF=−0.1. The outgoing lead is lo-
cated at �

1
2�, �

1
4�, �

3
4�.

FIG. 4. Same as Fig. 3, but the incoming lead is located at �
= 3

4� and the outgoing lead is located at �=0, �
1
2�, 1

4�, − 3
4�, �.

FIG. 5. �Color online� The ratio � as a function of the strength
of the RSOI Qr and DSOI Qd, when EF=−0.1. The incoming lead is
located at �=� and the outgoing lead is located at �=� /4, −� /4.
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��
2 sin 2� disappears when �=0. This effective periodic po-

tential exhibits the maxima at �= 1
4� and − 3

4�, and the
minima at �=− 1

4� and 3
4�. Therefore, the interplay between

RSOI and DSOI breaks the cylindrical symmetry of the ring
�see Fig. 7�.

In order to clarify the effect of the invasive role of the
lead on the anisotropy of the spin transport, we consider
different strengths between the ring and leads �as shown in
Fig. 6�. We find that the conductance decreases with decreas-
ing coupling strength, but the anisotropy ratios are almost the
same as before. We believe that the anisotropic spin transport
property is caused by the interplay between the Rashba and
Dresselhaus spin-orbit interactions.

Figure 7 describes how the conductance varies with the
variation of the strengths of the RSOI and DSOI. The con-
ductance oscillates quasiperiodically as the strengths of the
RSOI and DSOI increase and is symmetric with respect to
the straight line �=� since the Hamiltonian of the RSOI and
that of the DSOI are equivalent and can be transferred by the
SU�2� unitary transformation. The contribution from the

RSOI and DSOI to the spin splitting of electrons cancel each
other,22 which results in the disappearance of the oscillation
along �=�. This feature provides a possible way to detect
the strength of the DSOI since the strength of the RSOI can
be tuned by the external electric fields.

Below, we demonstrate that the interplay between the
RSOI and DSOI also results in the variation of the local
density of electrons in the ring. In Fig. 8, we plot the local
density of electrons in the ring from Eq. �7� with and without
the SOI. Figures 8�a� and 8�b� show that the local density of
electrons shows slow and very rapid oscillations. The fast
oscillation comes from the contribution of each site of the
lattice, while the slow variation of the envelope corresponds
to the bound �quasibound� states in the isolated �open� ring.
This feature is analogous to the situation of the effective
mass theory, where the electron wave function can be ex-
pressed as the product of two parts: the band-edge Bloch
function and the slow varying envelope function. The former
denotes the contribution from the atomic wave function and
the latter describes the bound �quasibound� state from the
external potential, e.g., the quantum well potential. Similar
results can be found in Ref. 27.

There is only a slight difference between the local densi-
ties of electron states with and without the RSOI but a sig-
nificant change in the presence of both the RSOI and DSOI
�see Fig. 8�c��. The local density of electrons exhibits
maxima at �=− 1

4�, 3
4�. This characteristic is also caused by

the periodic potential induced by the interplay between the
RSOI and DSOI. The positions of �= 1

4�, − 3
4� ��=− 1

4�,
3
4�� correspond to a potential barrier �well�, where the local
density of electron states is smaller �larger�. The interplay
between the RSOI and DSOI induces the periodic potential
and breaks the original cylindrical symmetry of the ring,
consequently changing the local density of electron states.

The above analysis assumes perfectly clean 1D systems,
in which there is no elastic or inelastic scattering at T=0. In
a realistic system, there will be many impurities in the
sample. Disorder could be incorporated by the fluctuation of

FIG. 6. �Color online� The conductance of a 1D ring as a func-
tion of the strength of equal RSOI and DSOI when EF=−0.1 for
different coupling strengths t0=1,0.6,0.4.

FIG. 7. �Color online� The conductance of a 1D ring as a func-
tion of the strength of the RSOI Qr and DSOI Qd when EF=−0.1.
The incoming lead is located at �=�, while the outgoing lead is
located at �=0.

FIG. 8. The local density of electrons along the ring � when
EF=0.1 �a� without the RSOI and DSOI, �b� with the RSOI alone,
and �c� with equal RSOI and DSOI �Qr=Qd=11.3�.
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the on-site energies, which distribute randomly within the
range width w ��n→�n+wn with −w /2�wn�w /2�.

In Fig. 9�a�, we plot the conductance as a function of
Fermi energy EF without RSOI. The ratio �� 1

4� ,− 1
4�� is

negligible for �weak and strong� different disorders w
=0.1,0.3 when the system is without the RSOI. Figure 9�b�
plots the conductance of a 1D ring as a function of the
strength of RSOI and DSOI, when Qr=Qd, for the various
random widths w=0.1,0.3,1 �w=1 for inset�. It can be
clearly seen that the disorder-averaged conductance for the
strong disorder case �w=1� shows almost the same aniso-
tropy as that for the weak disorder case �w=0.1,0.3� �see
Fig. 9�b��.

While the anisotropy of the 1D ring becomes significant
as the strengths of the RSOI and DSOI increase, random
disorder increases the scattering of the ring and decreases
conductance compared to that of a clean 1D ring. The aniso-
tropic spin transport can still survive even in the presence of
weak and strong disorder.

B. Spin polarization of current

The spin polarization vector of current P= �Px , Py , Pz� can
be evaluated as follows:23,24

P� = Trs��̂��̂� , �10�

where the density matrix is given by

�̂� =
e2/h

G↑� + G↓� �
p,p�=1

M � �tpp�,↑��2 tpp�,↑�t
pp�,↓�
*

tpp�,↓�t
pp�,↑�
* �tpp�,↓��2 � ,

�11�

where Trs denotes the trace in the spin Hilbert space. Then,
the spin polarized vector P is23

Px
� =

G↑� − G↓�

G↑� + G↓� , �12�

Py
� =

2e2/h
G↑� + G↓� �

p,p�=1

M

Re�tpp�,↑�t
pp�,↓�
* � , �13�

Pz
� =

2e2/h
G↑� + G↓� �

p,p�=1

M

Im�tpp�,↑�t
pp�,↓�
* � , �14�

where the x axis is chosen as the spin-quantized axis,
�̂x�↑ 
= + �↑ 
 and �̂x�↓ 
=−�↓ 
, so that the Pauli spin matrix
has the following form:

�̂x = �1 0

0 − 1
�, �̂y = �0 1

1 0
�, �̂z = � 0 i

− i 0
� . �15�

For the spin polarized injection, i.e., Px=1, the magnitude
of the spin polarization P in the outgoing lead will not
change, i.e., �P�=1, since there is no other orbit channel to
interact with the spin.28

Figure 10 depicts the current spin polarization Pi �i
=x ,y ,z� of a 1D ring as a function of the strength of the
RSOI Qr and the positions of the outgoing lead. The RSOI
behaves like an effective in-plane momentum-dependent
magnetic field, and the fully spin-up polarized current in the
incoming lead will be changed to the spin-down current in
the outgoing lead at large RSOI. The three components of the
outgoing polarization vector also show a cylindrical symme-

FIG. 9. �Color online� �a� The conductance of a 1D ring as a
function of Fermi energy EF without SOIs for random width w
=0.1,0.3. �b� The conductance and � of a 1D ring as a function of
the strength of the RSOI, for outgoing lead located at �= 1

4�, − 1
4�,

and Qr=Qd, EF=0.1, w=0.1,0.3. The inset shows the conductance
and the anisotropic ratio � when w=1.

FIG. 10. �Color online� The contour plot of the spin polarization of current as a function of the strength of the RSOI Qr alone and the
position of the right lead in the absence of the DSOI, EF=−0.1, Qd=0, �a� for Px, �b� for Py, and �c� for Pz. The spin-quantized axis is the
x axis.
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try for the RSOI or DSOI alone since the RSOI or DSOI
alone does not break the cylindrical symmetry of a 1D ring.
The spin polarization Px decreases rapidly from Px=1 to
Px−1 as the strength of the RSOI increases when the out-
going lead is located at the position near �=0, while the spin
polarizations Py and Pz oscillate and decrease to zero. When
the outgoing lead locates away from the x axis, i.e., �=0, Py
and Pz oscillate quickly with increasing Qr.

In Fig. 11, we show how the spin polarizations Pi �i
=x ,y ,z� vary with the strength of the SOIs and the position
of the outgoing lead � in the presence of equal-strength
RSOI and DSOI, i.e., Qr=Qd. All three components Px, Py,
and Pz oscillate regularly as the strengths of the RSOI and
DSOI increase and show significant anisotropy of spin polar-
ization with respect to the position of the outgoing lead. This
feature can also be understood from the interplay between
the effective periodic potential induced by the SOIs and the
quantum interference. For a fixed strength of the SOI, the
asymmetric characteristic of the polarization P as a function
of the angle � arises from the cylinder symmetry breaking
induced by the effective potential ��

2 sin 2�. The quantum
interference between the spin-up and spin-down electrons
traveling clockwise and/or counterclockwise along the ring’s
upper and lower arms leads to the oscillation of the polariza-
tion P as a function of the strengths of the SOIs at a fixed
angle �. Compared to Fig. 10, the spin polarization Px will
decrease to 0 instead of −1 as the strengths of the SOIs

increase. This is because the DSOI behaves like a twisted
in-plane magnetic field, while the effective magnetic field
induced by the RSOI always points along the radial of the
ring.

IV. CONCLUSION

We theoretically investigate the spin transport through a
two-terminal mesoscopic ring in the presence of both the
RSOI and DSOI. We find that the interplay between the
RSOI and DSOI leads to the anisotropic transport through a
two-terminal cylindrical mesoscopic ring, i.e., breaks the cy-
lindrical symmetry. This interesting feature arises from the
periodic potential along the ring caused by the interplay be-
tween the RSOI and DSOI. This interplay also results in a
significant variation in electron density and the spin polariza-
tion of current. The anisotropy of the spin transport through
the mesoscopic ring induced by the interplay between the
RSOI and DSOI can survive even in the presence of the
disorder effect. Furthermore, the anisotropy of the spin trans-
port should play an important role in the potential application
of all-electrical spintronic devices.
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